ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Theory of Gravitational Interactions

دانلود کتاب نظریه برهمکنش های گرانشی

Theory of Gravitational Interactions

مشخصات کتاب

Theory of Gravitational Interactions

دسته بندی: نظریه نسبیت و گرانش
ویرایش: 2013 
نویسندگان:   
سری: Undergraduate Lecture Notes in Physics 
ISBN (شابک) : 8847026903, 9788847026902 
ناشر: Springer 
سال نشر: 2013 
تعداد صفحات: 339 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Theory of Gravitational Interactions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه برهمکنش های گرانشی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric generalization of the Einstein equations. Theory of Gravitational Interactions will be of particular value to undergraduate students pursuing a theoretical or astroparticle curriculum. It can also be used by those teaching related subjects, by PhD students and young researchers working in different scientific sectors but wishing to enlarge their spectrum of interests, and, in general, by all scholars interested in the modern aspects and problems of gravitational interaction. Table of Contents Cover Theory of Gravitational Interactions ISBN 9788847026902 ISBN 9788847026919 Preface Notations, Units and Conventions Contents Chapter 1 Elementary Notions of Relativistic Field Theory 1.1 Symmetries and Conservation Laws 1.2 Global Translations and Canonical Energy-Momentum Tensor 1.2.1 A Comment on the Non-uniqueness of the Definitio 1.3 Lorentz Transformations and Canonical Angular Momentum 1.3.1 Symmetrization of the Energy-Momentum Tensor 1.4 Examples of Energy-Momentum Tensor 1.4.1 Scalar Field 1.4.2 Electromagnetic Field 1.4.3 Point-Like Particle 1.4.4 Perfect Fluid 1.5 Exercises Chap. 1 1.6 Solutions Chapter 2 Towards a Relativistic Theory of Gravity 2.1 The Postulates of the Riemannian Geometry 2.2 The Equivalence Principle 2.3 Exercises Chap. 2 2.4 Solutions Chapter 3 Tensor Calculus in a Riemann Manifold 3.1 Covariant and Contravariant Tensors 3.2 Tensor Densities 3.2.1 Contraction Rules for Totally Antisymmetric Tensors 3.3 Infinitesima Transformations, Isometries and Killing Vectors 3.3.1 Second-Order Infinitesima Transformations 3.4 Covariant Derivative and Affin Connection 3.4.1 Autoparallel Curves 3.5 Torsion, Non-metricity and Christoffel Symbols 3.6 Useful Rules of Covariant Differentiation 3.6.1 Trace of the Christoffel Connection 3.6.2 Covariant Derivatives of Tensor Densities 3.6.3 Covariant Divergence and d'Alembert Operator 3.7 Exercises Chap. 3 3.8 Solutions Chapter 4 Maxwell Equations and Riemann Geometry 4.1 The Minimal Coupling Principle 4.2 Coupling Geometry and Electromagnetic Fields 4.3 The Generalized Maxwell Equations 4.3.1 Analogy with the Maxwell Equations in an Optical Medium 4.4 Exercises Chap. 4 4.5 Solutions Chapter 5 Test Bodies and Signals in a Riemann Space-Time 5.1 Geodesic Motion of Free Particles 5.2 The Newtonian Limit 5.3 Time Dilatation and Frequency Shifts 5.3.1 The Frequency Shift in a Newtonian Field 5.4 Exercises Chap. 5 5.5 Solutions Chapter 6 Geodesic Deviation and Curvature Tensor 6.1 The Equation of Geodesic Deviation 6.2 The Riemann Curvature Tensor 6.3 A Simple Example: Constant-Curvature Manifolds 6.4 Exercises Chap. 6 6.5 Solutions Chapter 7 The Einstein Equations for the Gravitational Field 7.1 Gravitational Action and Field Equations 7.1.1 Boundary Contributions 7.1.2 Contribution of the Matter Sources 7.1.3 Einstein Equations 7.2 The Dynamical Energy-Momentum Tensor 7.2.1 Examples: Scalar and Vector Fields, Point-Like Sources 7.3 The Einstein Equations with a Cosmological Constant 7.4 Energy-Momentum Conservation and Motion of Test Bodies 7.5 Exercises Chap. 7 7.6 Solutions Chapter 8 The Weak-Field Approximation 8.1 Linearized Einstein Equations 8.1.1 The Harmonic Gauge 8.2 Space-Time Metric for a Weak and Static Field 8.3 The Bending of Light Rays 8.4 The Radar-Echo Delay 8.5 Velocity Measurements in the Presence of Gravity 8.6 Exercises Chap. 8 8.7 Solutions Chapter 9 Gravitational Waves 9.1 Propagation of Metric Fluctuations in Vacuum 9.1.1 Polarization and Helicity States 9.2 Radiation Emission in the Quadrupole Approximation 9.2.1 Gravitational Field in the Radiation Zone 9.2.2 Energy-Momentum Tensor of a Gravitational Wave 9.2.3 Radiated Power 9.2.4 Example: A Binary Star System 9.3 The Interaction of Monochromatic Waves with Massive Bodies 9.4 The Damped Oscillator as a Gravitational Detector 9.4.1 The Presently Operating Detectors 9.5 Exercises Chap. 9 9.6 Solutions Chapter 10 The Schwarzschild Solution 10.1 Spherically Symmetric Einstein Equations in Vacuum 10.2 The Birkhoff Theorem and the Schwarzschild Solution 10.2.1 The Weak-Field Limit 10.3 Perihelion Precession 10.4 Event Horizon and Kruskal Coordinates 10.4.1 Causal Structure of the fiBlak Holef Geometry 10.5 Exercises Chap. 10 10.6 Solutions Chapter 11 The Kasner Solution 11.1 Einstein Equations for Homogeneous and Anisotropic Metrics 11.2 Higher-Dimensional Solutions in Vacuum 11.3 Exercises Chap. 11 11.4 Solutions Chapter 12 Vierbeins and Lorentz Connection 12.1 Projection on the Flat Tangent Space 12.1.1 Local Symmetries and Gauge Fields 12.2 Local Lorentz Invariance and Covariant Derivative 12.2.1 The Metricity Condition for the Vierbeins 12.3 The Levi-Civita Connection and the Ricci Rotation Coefficient 12.3.1 The Curvature Tensor and the Gravitational Action 12.4 Exercises Chap. 12 12.5 Solutions Chapter 13 The Dirac Equation in a Gravitational Field 13.1 A Concise Summary of the Spinor Formalism 13.2 A Covariant and Locally Lorentz-Invariant Dirac Equation 13.3 Geometry Couplings to the Axial and Vector Currents 13.4 Symmetrized Form of the Covariant Dirac Action 13.5 Exercises Chap. 13 13.6 Solutions Chapter 14 Supersymmetry and Supergravity 14.1 Global Supersymmetry in Flat Space-Time 14.1.1 Example: The Wess-Zumino Model 14.2 The Rarita-Schwinger Field 14.2.1 Global Supersymmetry in the Graviton-Gravitino System 14.3 N = 1 Supergravity in D = 4Dimensions 14.3.1 Field Equations for the Metric and the Gravitino 14.4 Exercises Chap. 14 14.5 Solutions Appendix A The Language of Differential Forms Appendix B Higher-Dimensional Gravity References Index





نظرات کاربران