ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Renewable energy applications for freshwater production

دانلود کتاب برنامه های انرژی تجدید پذیر برای تولید آب شیرین

Renewable energy applications for freshwater production

مشخصات کتاب

Renewable energy applications for freshwater production

دسته بندی: انرژی
ویرایش:  
نویسندگان:   
سری: Sustainable energy developments, 2 
ISBN (شابک) : 9780415620895, 0415620899 
ناشر: CRC Press 
سال نشر: 2012 
تعداد صفحات: 282 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 48,000



کلمات کلیدی مربوط به کتاب برنامه های انرژی تجدید پذیر برای تولید آب شیرین: مجتمع سوخت و انرژی، انرژی جایگزین



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Renewable energy applications for freshwater production به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب برنامه های انرژی تجدید پذیر برای تولید آب شیرین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

Content: About the book series Editorial board Contributors Foreword Preface Editors' preface About the editors Acknowledgements 1 Addressing freshwater shortage with renewable energies (J. Bundschuh & J. Hoinkis) 1.1 Introduction 1.2 The water problem 1.3 The energy problem 1.4 Overview on technologies based on renewable energies for freshwater production 1.4.1 Sustainable freshwater solutions through wastewater treatment and reuse powered by renewable energies 1.4.2 Sustainable drinking water solutions through desalination by solar and wind energy 1.4.3 Geothermal resources options for desalination 1.5 Conclusions and outlook 2 Overview of renewable energy technologies for freshwater production (M. Goosen, H. Mahmoudi & N. Ghaffour) 2.1 Introduction 2.2 Freshwater production using renewable energies 2.2.1 Applications of solar energy for water desalination 2.2.2 Wind power and desalination 2.2.3 Wave and tidal power for desalination 2.2.4 Geothermal desalination 2.3 Scale-up and economic considerations 2.3.1 Factors affecting scale-up 2.3.2 Cost-efficiency compared to conventional energy sources 2.3.3 Market potential 2.3.4 Process selection and risk management 2.3.5 Promotion of renewable energy policy and reduction in reliance on conventional power generation 2.4 Case studies 2.4.1 Desalination using renewable energies in Algeria 2.4.2 Seawater greenhouse development for Oman in the Arabian Gulf 2.4.3 Water desalination with renewable energies in Baja California Peninsula in Mexico 2.4.4 Geothermal energy in seawater desalination in Milos Island, Greece 2.4.5 The Kwinana desalination plant and wind farm in Perth,Western Australia 2.4.6 A proposed wave energy converter coupled to an RO desalination plant for Orkney, UK 2.4.7 A proposal for combined large-scale solar power and desalination plants for the North Africa, Middle East and European region and international renewable energy alliances 2.4.8 Solar-powered membrane distillation in Spain, Italy and Tunisia 2.4.9 Solar-powered adsorption desalination prototype in Saudi Arabia 2.5 Environmental concerns and sustainability 2.6 Regulatory, policy and legal considerations 2.7 Choosing the most appropriate technology for freshwater production 2.8 Concluding remarks 3 Use of passive solar thermal energy for freshwater production (G. Zaragoza, D. Alarcon & J. Blanco) 3.1 Introduction 3.1.1 A history of the solar still 3.2 Passive solar stills 3.3 Thermodynamic modelling of the solar still 3.3.1 Convective heat transfer 3.3.2 Evaporative heat transfer 3.4 Performance of the solar still 3.5 Designs and techniques to improve the performance of the solar still 3.5.1 Enhancing the light transmission 3.5.2 Enhancing the evaporation 3.5.3 Working in sub-atmospheric conditions 3.5.4 Enhancing the heat absorption 3.5.5 Storing the incident solar energy 3.5.6 Reducing the depth of water in the basin 3.5.7 Reducing the temperature of the cover 3.5.8 Separating evaporating and condensing zones 3.5.9 Reusing the latent heat of condensation in two or more stages 4 Solar desalination with humidification-dehumidification process: design and analysis (H. Ben Bacha) 4.1 Introduction 4.2 State-of-the-art 4.2.1 Open-water/closed-air cycle 4.2.2 Closed-water/open-air cycle 4.3 Design and working principle of the SMCEC desalination unit 4.4 Components mathematical modeling 4.4.1 Solar collector modeling 4.4.2 Evaporation tower modeling 4.4.3 Condensation tower modeling 4.5 Numerical results 4.5.1 Solar collector 4.5.2 Evaporation tower 4.5.3 Condensation tower 4.5.4 Entire desalination unit 4.6 Experimental validation 4.6.1 Solar collector 4.6.2 Distillation module 4.7 Cost analysis 5 Solar PV powered RO systems (V.J. Subiela, B. Penate, F. Castellano & F.J. Dominguez) 5.1 Introduction 5.2 Review of the state-of-the-art 5.3 How to implement a PV-RO system 5.3.1 Generalities 5.3.2 The implementation process 5.4 Description of the technological concept 5.4.1 Approach to the solution 5.4.2 Description of the PV technology 5.4.3 Stand-alone photovoltaic sub-systems 5.4.4 Stand-alone PV-RO 5.5 Technical characteristics of selected operating systems 5.5.1 PV-RO system in Tunisia 5.5.2 PV-RO systems in Morocco 5.6 Economic and social issues 5.6.1 Water cost analysis 5.6.2 Influences of the social and institutional local reality 5.6.3 Case of Tunisia 5.6.4 Case of Morocco 5.7 Conclusions 6 Wind energy powered technologies for freshwater production: fundamentals and case studies (E. Tzen) 6.1 Introduction 6.2 Wind energy technology 6.3 Wind energy for freshwater production 6.3.1 Wind reverse osmosis systems 6.3.2 Wind mechanical vapor compression systems 6.3.3 Wind electrodialysis systems 6.4 Wind desalination market 1 6.5 Conclusions 7 Geothermal water treatment - preliminary experiences from Poland with a global overview of membrane and hybrid desalination technologies (W. Bujakowski, B. Tomaszewska & M. Bodzek) 7.1 Introduction 7.2 Global overview of membrane technologies 7.2.1 Types of membrane processes 7.3 Hybrid desalination processes 7.4 Framework for desalinating geothermal water in Poland 7.4.1 Presence and quality of geothermal waters in Poland 7.4.2 Choice of desalination technologies 7.4.3 Pilot desalination facility 7.4.4 Preliminary research results 7.5 Summary 8 Solar disinfection as low-cost technologies for clean water production (J.M. Meichtry & M.I. Litter) 8.1 Introduction to low-cost technologies for disinfection and decontamination of drinking water for human consumption 8.1.1 The problem of water 8.1.2 Alternative water treatment technologies 8.2 Drinking water disinfection 8.3 Use of solar energy for disinfection 8.3.1 The solar disinfection method (SODIS) 8.3.2 Fundamentals of SODIS and mechanisms of disinfection 8.3.3 Experimental conditions for SODIS 8.4 Heterogeneous photocatalysis 8.4.1 Fundamentals of HP 8.4.2 Use of heterogeneous photocatalysis in water disinfection 8.4.3 Mechanisms of photocatalytic disinfection processes and disinfection kinetics 8.4.4 Effect of photocatalyst: Immobilization 8.4.5 Photoreactors for heterogeneous photocatalytic disinfection 8.5 Fenton and photo-Fenton processes in water disinfection 8.6 Conclusions Subject index Book series page



فهرست مطالب

1.1 Introduction......Page 32
1.2 The water problem......Page 33
1.3 The energy problem......Page 36
1.4.1 Sustainable freshwater solutions through wastewater treatment and reuse powered by renewable energies......Page 39
1.4.2 Sustainable drinking water solutions through desalination by solar and wind energy......Page 41
1.4.3 Geothermal resources options for desalination......Page 47
1.5 Conclusions and outlook......Page 49
2.1 Introduction......Page 55
2.2.1 Applications of solar energy for water desalination......Page 57
2.2.2 Wind power and desalination......Page 64
2.2.3 Wave and tidal power for desalination......Page 65
2.3.1 Factors affecting scale-up......Page 68
2.3.2 Cost-efficiency compared to conventional energy sources......Page 70
2.3.3 Market potential......Page 74
2.3.4 Process selection and risk management......Page 76
2.3.5 Promotion of renewable energy policy and reduction in reliance onconventional power generation......Page 77
2.4.1 Desalination using renewable energies in Algeria......Page 79
2.4.2 Seawater greenhouse development for Oman in the Arabian Gulf......Page 82
2.4.3 Water desalination with renewable energies in Baja California Peninsula in Mexico......Page 83
2.4.4 Geothermal energy in seawater desalination in Milos Island, Greece......Page 84
2.4.5 The Kwinana desalination plant and wind farm in Perth,Western Australia......Page 86
2.4.6 A proposed wave energy converter coupled to an RO desalination plant for Orkney, UK......Page 87
2.4.7 A proposal for combined large-scale solar power and desalination plants for the North Africa, Middle East and European region and international renewable energy alliances......Page 88
2.4.8 Solar-powered membrane distillation in Spain, Italy and Tunisia......Page 89
2.5 Environmental concerns and sustainability......Page 91
2.6 Regulatory, policy and legal considerations......Page 93
2.7 Choosing the most appropriate technology for freshwater production......Page 96
2.8 Concluding remarks......Page 100
3.1 Introduction......Page 108
3.1.1 A history of the solar still......Page 109
3.2 Passive solar stills......Page 110
3.3 Thermodynamic modelling of the solar still......Page 111
3.3.1 Convective heat transfer......Page 112
3.3.2 Evaporative heat transfer......Page 114
3.4 Performance of the solar still......Page 115
3.5.1 Enhancing the light transmission......Page 116
3.5.4 Enhancing the heat absorption......Page 119
3.5.6 Reducing the depth of water in the basin......Page 121
3.5.7 Reducing the temperature of the cover......Page 122
3.5.8 Separating evaporating and condensing zones......Page 123
3.5.9 Reusing the latent heat of condensation in two or more stages......Page 124
4.1 Introduction......Page 131
4.2 State-of-the-art......Page 132
4.2.1 Open-water/closed-air cycle......Page 133
4.2.2 Closed-water/open-air cycle......Page 138
4.3 Design and working principle of the SMCEC desalination unit......Page 143
4.4.2 Evaporation tower modeling......Page 147
4.4.3 Condensation tower modeling......Page 149
4.5.1 Solar collector......Page 151
4.5.3 Condensation tower......Page 152
4.5.4 Entire desalination unit......Page 153
4.6.1 Solar collector......Page 156
4.7 Cost analysis......Page 157
5.1 Introduction......Page 163
5.3.1 Generalities......Page 164
5.3.2 The implementation process......Page 166
5.4.1 Approach to the solution......Page 169
5.4.3 Stand-alone photovoltaic sub-systems......Page 170
5.4.4 Stand-alone PV-RO......Page 171
5.5.1 PV-RO system in Tunisia......Page 172
5.5.2 PV-RO systems in Morocco......Page 176
5.6 Economic and social issues......Page 179
5.6.1 Water cost analysis......Page 180
5.6.2 Influences of the social and institutional local reality......Page 183
5.6.4 Case of Morocco......Page 185
5.7 Conclusions......Page 186
6.2 Wind energy technology......Page 189
6.3.1 Wind reverse osmosis systems......Page 194
6.3.2 Wind mechanical vapor compression systems......Page 201
6.3.3 Wind electrodialysis systems......Page 205
6.5 Conclusions......Page 206
7.1 Introduction......Page 209
7.2 Global overview of membrane technologies......Page 211
7.2.1 Types of membrane processes......Page 212
7.3 Hybrid desalination processes......Page 217
7.4.1 Presence and quality of geothermal waters in Poland......Page 220
7.4.2 Choice of desalination technologies......Page 223
7.4.3 Pilot desalination facility......Page 225
7.4.4 Preliminary research results......Page 228
7.5 Summary......Page 230
8.1.1 The problem of water......Page 235
8.1.2 Alternative water treatment technologies......Page 236
8.2 Drinking water disinfection......Page 238
8.3.1 The solar disinfection method SODIS......Page 239
8.3.2 Fundamentals of SODIS and mechanisms of disinfection......Page 242
8.3.3 Experimental conditions for SODIS......Page 246
8.4.1 Fundamentals of HP......Page 249
8.4.2 Use of heterogeneous photocatalysis in water disinfection......Page 250
8.4.3 Mechanisms of photocatalytic disinfection processes and disinfection kinetics......Page 254
8.4.4 Effect of photocatalyst: Immobilization......Page 255
8.4.5 Photoreactors for heterogeneous photocatalytic disinfection......Page 256
8.5 Fenton and photo-Fenton processes in water disinfection......Page 257
8.6 Conclusions......Page 259
C......Page 267
D......Page 268
F......Page 272
G......Page 273
K......Page 274
M......Page 275
P......Page 276
T......Page 279
W......Page 280
Z......Page 281
Book series page......Page 282




نظرات کاربران