ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Radiopharmaceuticals : introduction to drug evaluation and dose estimation

دانلود کتاب رادیو دارویی: مقدمه ای برای ارزیابی دارو و برآورد دوز

Radiopharmaceuticals : introduction to drug evaluation and dose estimation

مشخصات کتاب

Radiopharmaceuticals : introduction to drug evaluation and dose estimation

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781439810675, 1439810672 
ناشر: CRC Press 
سال نشر: 2011 
تعداد صفحات: 309 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Radiopharmaceuticals : introduction to drug evaluation and dose estimation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رادیو دارویی: مقدمه ای برای ارزیابی دارو و برآورد دوز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

"This comprehensive overview details the process of radiopharmaceutical development, from cellular studies to animal experiments to the design and implementation of clinical trials. It examines the relative benefits of various radiopharmaceuticals and provides guidance on dose estimation and agent selection. Utilizing figures of merit for quantitative assessment, it covers standard medical internal radiation dose (MIRD), absorbed dose method for imaging agents, vivo methods for obtaining activity data, errors of activity estimation techniques, phantom-based and patient-based dose estimates and their associated uncertainties, and options available to clinical physicists. Supported by numerous examples from clinical trials, it discusses two and three dimensional estimation processes, including modern hybrid scanners such as SPECT /CT and PET/CT"--Provided by publisher. Read more... Content: Tumor Targeting and a Problem of Plenty Introduction The Extent of Disease Radioactive Decay Radionuclide Labels Radionuclide Emissions Charged Particles Uncharged Particles Methods of Labeling Nanoengineering Colloidal Designs Liposomes Antibodies Small Proteins Oligonucleotides Aptamers RNA Interference Morpholino Adaptations Summary References Preclinical Development of Radiopharmaceuticals and Planning of Clinical Trials Introduction: Nuclear Medicine The Tools of Ignorance: Photon Detection and Imaging Devices Single Probes Well Counters Gamma Cameras SPECT Imaging PET Imaging SPECT-CT Hybrid Systems PET-CT Miniature Gamma, SPECT, and PET Cameras Animal Biodistributions Specific Targeting In Vivo Biodistributions in Mice Logistics of Human Trials Cost of Human Trials Summary References Selection of Radiopharmaceuticals for Clinical Trials Introduction Tumor Uptake as a Function of Tumor Mass Derivation of the Imaging Figure of Merit Application of IFOM to Five Anti-CEA Cognate Antibodies Iodine versus Indium Labeling PET Application of the IFOM Verification of the IFOM Finding Potentially Useful Imaging Agents by Deconvolution Therapy Figure of Merit Summary References Absorbed Dose Estimation and Measurement Introduction Absorbed Dose Absorbed Dose as a Concept Geometry of Absorbed Dose Estimation Biological Applications of the Dose Estimation Process Reasons for Clinical Absorbed Dose Estimation Dose Measurements Corrections to the Dose Estimates Ionization Energy Density and Absorbed Dose Temporal Variation in Dose Rate Organ Heterogeneity Effective Dose Methods for Estimating Absorbed Dose for Internal Emitters The Canonical MIRD Estimation Method for Internal Emitter Doses Types of MIRD Human Dose Estimates Point Source Functions for Dose Estimation Absorbed Dose Estimates Using Voxel Source Kernels Measurement of Radiation Dose by Miniature Dosimeters in a Liquid Medium Measurement of Brake Radiation Absorbed Dose in a Phantom Using TLDs Summary References Determination of Activity In Vivo Introduction Activity Data Acquisition via Nonimaging Methods Blood Curve and Other Direct Organ Samplings Probe Counting Activity Data Acquisition via Imaging Camera Imaging to Determine Activity Geometric Mean Imaging to Determine Activity CAMI Imaging to Determine A(t) Quantitative SPECT Imaging to Determine A(t) PET Image Quantitation and the SUV Value Diagnostic Use of the Standard Uptake Value Parameter Other PET Radionuclides and Image Quantitation Bone Marrow A(t) Values Combinations of Methods for Practical Activity Measurements Summary References Modeling and Temporal Integration Reasons for Modeling Correction for Radiodecay Two Formats for Modeling Compartment Models Noncompartment Models Multiple-Exponential Functions Power-Law Modeling Tumor Uptake as a Function of Tumor Mass Sigmoidal Functions Basis Functions Data Representation with Trapezoids and Splines Deconvolution as a Modeling Strategy Statistical Matters Methods to Estimate Errors in Calculated Parameters Such as AUC Bootstrapping Monte Carlo Methods Differential Methods to Estimate AUC Errors Partial Differential Equations as a More General Modeling Format Some Standard Software Packages for Modeling ADAPT II SAAM II The R Development Summary References Functions Used to Determine Absorbed Dose Given Activity Integrals Introduction Point-Source Function Voxel Source Kernel S Matrix Considerations Methodology of the S Matrix S Matrix Symmetry Target Organ Mass Dependence of S for Particles Target Organ Mass Dependence of S for Photons Applications of S Matrices Applications of Standard (Phantom) S Values An Aside: Changes in A Needed in Phantom Studies Elaboration of Standard S Matrices for Kidney Modification of S for Patient-Specific Absorbed Dose Estimates Inverting the S Matrix to Measure Activity Variation of Target Mass during Therapy Murine S Values Estimated Using Monte Carlo Techniques Summary References Absorbed Dose Estimates without Clinical Correlations Introduction Absorbed Dose Estimates for Animal Models Absorbed Dose Estimates for I-MIBG Therapy Lymphoma Therapy Absorbed Dose Estimates Treatment of Lymphoma Using Lym- Antibody Zevalin Absorbed Dose Estimates for Lymphoma Patients Bexxar Absorbed Dose Estimates for Lymphoma Patients Interventional Therapy of Hepatic Malignancies Using Microspheres Colorectal Cancer Therapy Using TRT Summary References Dose Estimates and Correlations with Laboratory and Clinical Results Introduction Animal Results Correlating Absorbed Dose and Effects Lymphocyte Chromosome Defects Observed Following TRT Lymphoma Tumor Dose Estimates and Disease Regression Improving Hematological Toxicity Correlations with Red Marrow Absorbed Dose Estimates Renal Toxicity Following Peptide Radionuclide Therapy Summary References Multiple-Modality Therapy of Tumors Introduction Surgery and Targeted Radionuclide Therapy Treatment of Residual Thyroid Tissue Breast Cancer Treatment Postsurgery Brain Tumor Therapy Postsurgery Hepatic Tumor Therapy to Expedite Subsequent Surgery Hyperthermia and TRT External Beam and TRT Chemotherapy and TRT TRT and Cisplatin TRT and Taxanes TRT and Gemcitabine TRT and -Fluorouracil (-FU) Immune Manipulation and TRT Increasing the CEA Content of Colorectal Tumors Using Cold anti-CD Antibody to Enhance TRT in Lymphoma Therapies Zevalin therapy Tositumomab (Bexxar) therapy Vaccination and TRT in Colorectal Cancer Therapy in Mice Summary References Allometry (Of Mice and Men) Introduction Allometry in Nature Historical Temporal and Kinetic Correspondences Measured Protein Kinetic Parameters Using Simple Allometry Kinetic Variations Using a More Sophisticated Analysis Comparisons of Tumor Uptake as a Function of Tumor Mass Single-Parameter Comparisons of Mouse and Human Kinetics Comparing the Rate Constants in a Compartmental Model: Human versus Mouse Summary References Summary of Radiopharm-aceuticals and Dose Estimation Introduction (Chapter 1) Animal Results (Chapter 2) Figures of Merit for Clinical Trials (Chapter 3) Absorbed Dose Estimation (Chapter 4) Determining Activity at Depth in the Patient (Chapter 5) Modeling of Biodistributions and Other Data (Chapter 6) Numerical Values of S and Other Dose Estimation Functions (Chapter 7) Absorbed Dose Estimates without Correlations (Chapter 8) Absorbed Dose Correlations with Biological Effects (Chapter 9) Combinations of Radiation and Other Therapies (Chapter 10) Allometry (Chapter 11) Summary References Index Abstract: "This comprehensive overview details the process of radiopharmaceutical development, from cellular studies to animal experiments to the design and implementation of clinical trials. It examines the relative benefits of various radiopharmaceuticals and provides guidance on dose estimation and agent selection. Utilizing figures of merit for quantitative assessment, it covers standard medical internal radiation dose (MIRD), absorbed dose method for imaging agents, vivo methods for obtaining activity data, errors of activity estimation techniques, phantom-based and patient-based dose estimates and their associated uncertainties, and options available to clinical physicists. Supported by numerous examples from clinical trials, it discusses two and three dimensional estimation processes, including modern hybrid scanners such as SPECT /CT and PET/CT"--Provided by publisher



فهرست مطالب

Contents......Page 5
Foreword......Page 11
Preface......Page 13
Acknowledgments......Page 17
About the Author......Page 18
1.1 Introduction......Page 19
1.2 The Extent of Disease......Page 20
1.2.2 Radionuclide Labels......Page 23
1.3.1 Charged Particles......Page 24
1.3.2 Uncharged Particles......Page 27
1.4 Methods of Labeling......Page 28
1.5 Nanoengineering......Page 30
1.7 Liposomes......Page 31
1.8 Antibodies......Page 35
1.9 Small Proteins......Page 38
1.10.1 Aptamers......Page 39
1.10.2 RNA Interference......Page 40
1.11 Summary......Page 41
References......Page 43
2.1 Introduction: Nuclear Medicine......Page 45
2.2.1 Single Probes......Page 46
2.2.2 Well Counters......Page 48
2.2.3 Gamma Cameras......Page 49
2.2.4 SPECT Imaging......Page 52
2.2.5 PET Imaging......Page 53
2.2.6 SPECT–CT Hybrid Systems......Page 54
2.2.7 PET–CT......Page 55
2.3 Animal Biodistributions......Page 56
2.3.2 Biodistributions in Mice......Page 58
2.4 Logistics of Human Trials......Page 64
2.5 Cost of Human Trials......Page 67
2.6 Summary......Page 68
References......Page 69
3.1 Introduction......Page 71
3.2 Tumor Uptake as a Function of Tumor Mass......Page 72
3.3 Derivation of the Imaging Figure of Merit......Page 75
3.4 Application of IFOM to Five Anti-CEA Cognate Antibodies......Page 79
3.5 Iodine versus Indium Labeling......Page 84
3.6 PET Application of the IFOM......Page 86
3.7 Verification of the IFOM......Page 87
3.8 Finding Potentially Useful Imaging Agents by Deconvolution......Page 90
3.9 Therapy Figure of Merit......Page 92
3.10 Summary......Page 95
References......Page 96
4.2 Absorbed Dose......Page 98
4.2.1 Absorbed Dose as a Concept......Page 99
4.2.3 Biological Applications of the Dose Estimation Process......Page 101
4.3 Reasons for Clinical Absorbed Dose Estimation......Page 102
4.4 Dose Measurements......Page 103
4.5 Corrections to the Dose Estimates......Page 104
4.5.1 Ionization Energy Density and Absorbed Dose......Page 105
4.5.2 Temporal Variation in Dose Rate......Page 107
4.5.3 Organ Heterogeneity......Page 108
4.5.4 Effective Dose......Page 109
4.6.1 The Canonical MIRD Estimation Method for Internal Emitter Doses......Page 110
4.6.2 Types of MIRD Human Dose Estimates......Page 113
4.7 Point Source Functions for Dose Estimation......Page 115
4.9 Measurement of Radiation Dose by Miniature Dosimeters in a Liquid Medium......Page 116
4.10 Measurement of Brake Radiation Absorbed Dose in a Phantom Using TLDs......Page 118
4.11 Summary......Page 121
References......Page 122
5.1 Introduction......Page 124
5.2.1 Blood Curve and Other Direct Organ Samplings......Page 125
5.2.2 Probe Counting......Page 126
5.3.1 Camera Imaging to Determine Activity......Page 127
5.3.2 Geometric Mean Imaging to Determine Activity......Page 129
5.3.3 CAMI Imaging to Determine At......Page 132
5.3.4 Quantitative SPECT Imaging to Determine At......Page 134
5.3.6 Diagnostic Use of the Standard Uptake Value Parameter......Page 136
5.4 Bone Marrow At Values......Page 139
5.5 Combinations of Methods for Practical Activity Measurements......Page 141
5.6 Summary......Page 143
References......Page 144
6.1 Reasons for Modeling......Page 146
6.1.1 Correction for Radiodecay......Page 147
6.3 Compartment Models......Page 148
6.4.1 Multiple-Exponential Functions......Page 150
6.4.2 Power-Law Modeling......Page 155
6.4.3 Tumor Uptake as a Function of Tumor Mass......Page 156
6.4.4 Sigmoidal Functions......Page 157
6.5 Basis Functions......Page 158
6.6 Data Representation with Trapezoids and Splines......Page 159
6.7 Deconvolution as a Modeling Strategy......Page 160
6.8 Statistical Matters......Page 162
6.9 Methods to Estimate Errors in Calculated Parameters Such as AUC......Page 163
6.9.2 Monte Carlo Methods......Page 164
6.9.3 Differential Methods to Estimate AUC Errors......Page 165
6.10 Partial Differential Equations as a More General Modeling Format......Page 166
6.11.1 ADAPT II......Page 167
6.11.2 SAAM II......Page 168
6.11.3 The R Development......Page 169
6.12 Summary......Page 170
References......Page 171
7.1 Introduction......Page 172
7.2 Point-Source Function......Page 173
7.3 Voxel Source Kernel......Page 174
7.4.1 Methodology of the S Matrix......Page 176
7.4.2 S Matrix Symmetry......Page 177
7.4.3 Target Organ Mass Dependence of S for Particles......Page 179
7.4.4 Target Organ Mass Dependence of S for Photons......Page 180
7.5.1 Standard Phantom S Values......Page 181
7.5.2 An Aside: Changes in à Needed in Phantom Studies......Page 182
7.5.3 Elaboration of Standard S Matrices for Kidney......Page 183
7.6 Modification of S for Patient-Specific Absorbed Dose Estimates......Page 184
7.7 Inverting the S Matrix to Measure Activity......Page 185
7.8 Variation of Target Mass during Therapy......Page 186
7.9 Murine S Values Estimated Using Monte Carlo Techniques......Page 188
7.10 Summary......Page 191
References......Page 192
8.1 Introduction......Page 194
8.2 Absorbed Dose Estimates for Animal Models......Page 196
8.3 Absorbed Dose Estimates for 131I-MIBG Therapy......Page 197
8.4.1 Treatment of Lymphoma Using Lym-1 Antibody......Page 198
8.4.2 Zevalin Absorbed Dose Estimates for Lymphoma Patients......Page 200
8.4.3 Bexxar Absorbed Dose Estimates for Lymphoma Patients......Page 205
8.5 Interventional Therapy of Hepatic Malignancies Using Microspheres......Page 206
8.6 Colorectal Cancer Therapy Using TRT......Page 209
8.7 Summary......Page 211
References......Page 212
9.1 Introduction......Page 214
9.2 Animal Results Correlating Absorbed Dose and Effects......Page 215
9.3 Lymphocyte Chromosome Defects Observed Following TRT......Page 219
9.4 Lymphoma Tumor Dose Estimates and Disease Regression......Page 222
9.5 Improving Hematological Toxicity Correlations with Red Marrow Absorbed Dose Estimates......Page 225
9.6 Renal Toxicity Following Peptide Radionuclide Therapy......Page 228
9.7 Summary......Page 233
References......Page 234
10.1 Introduction......Page 236
10.2.1 Treatment of Residual Thyroid Tissue......Page 238
10.2.2 Breast Cancer Treatment Postsurgery......Page 239
10.2.3 Brain Tumor Therapy Postsurgery......Page 241
10.3 Hyperthermia and TRT......Page 242
10.4 External Beam and TRT......Page 246
10.5.1 TRT and Cisplatin......Page 248
10.5.2 TRT and Taxanes......Page 249
10.5.3 TRT and Gemcitabine......Page 250
10.5.4 TRT and 5-Fluorouracil 5-FU......Page 251
10.6.1 Increasing the CEA Content of Colorectal Tumors......Page 252
10.6.2 Using Cold Anti-CD20 Antibody to Enhance TRT in Lymphoma Therapies......Page 253
10.6.3 Vaccination and TRT in Colorectal Cancer Therapy in Mice......Page 256
10.7 Summary......Page 257
References......Page 259
11.1 Introduction......Page 261
11.2 Allometry in Nature......Page 262
11.3 Historical Temporal and Kinetic Correspondences......Page 266
11.3.1 Measured Protein Kinetic Parameters Using Simple Allometry......Page 268
11.3.2 Kinetic Variations Using a More Sophisticated Analysis......Page 271
11.4 Comparisons of Tumor Uptake as a Function of Tumor Mass......Page 273
11.5 Single-Parameter Comparisons of Mouse and Human Kinetics......Page 278
11.6 Comparing the Rate Constants in a Compartmental Model: Human versus Mouse......Page 280
11.7 Summary......Page 282
References......Page 283
12.1 Introduction Chapter 1......Page 285
12.2 Animal Results Chapter 2......Page 286
12.3 Figures of Merit for Clinical Trials Chapter 3......Page 287
12.4 Absorbed Dose Estimation Chapter 4......Page 290
12.5 Determining Activity at Depth in the Patient Chapter 5......Page 292
12.6 Modeling of Biodistributions and Other Data Chapter 6......Page 293
12.7 Numerical Values of S and Other Dose Estimation Functions Chapter 7......Page 300
12.8 Absorbed Dose Estimates without Correlations Chapter 8......Page 302
12.10 Combinations of Radiation and Other Therapies Chapter 10......Page 304
12.11 Allometry Chapter 11......Page 305
12.12 Summary......Page 306
References......Page 308




نظرات کاربران